Hetero-Labeled LDA: A Partially Supervised Topic Model with Heterogeneous Labels
نویسندگان
چکیده
We propose Hetero-Labeled LDA (hLLDA), a novel semi-supervised topic model, which can learn from multiple types of labels such as document labels and feature labels (i.e., heterogeneous labels), and also accommodate labels for only a subset of classes (i.e., partial labels). This addresses two major limitations in existing semi-supervised learning methods: they can incorporate only one type of domain knowledge (e.g. document labels or feature labels), and they assume that provided labels cover all the classes in the problem space. This limits their applicability in real-life situations where domain knowledge for labeling comes in different forms from different groups of domain experts and some classes may not have labels. hLLDA resolves both the label heterogeneity and label partialness problems in a unified generative process. hLLDA can leverage different forms of supervision and discover semantically coherent topics by exploiting domain knowledge mutually reinforced by different types of labels. Experiments with three document collections–Reuters, 20 Newsgroup and Delicious– validate that our model generates a better set of topics and efficiently discover additional latent topics not covered by the labels resulting in better classification and clustering accuracy than existing supervised or semisupervised topic models. The empirical results demonstrate that learning from multiple forms of domain knowledge in a unified process creates an enhanced combined effect that is greater than a sum of multiple models learned separately with one type of supervision.
منابع مشابه
Semi-supervised Bibliographic Element Segmentation with Latent Permutations
This paper proposes a semi-supervised bibliographic element segmentation. Our input data is a large scale set of bibliographic references each given as an unsegmented sequence of word tokens. Our problem is to segment each reference into bibliographic elements, e.g. authors, title, journal, pages, etc. We solve this problem with an LDA-like topic model by assigning each word token to a topic so...
متن کاملMulti-Label Classification from Multiple Noisy Sources Using Topic Models
Multi-label classification is a well-known supervised machine learning setting where each instance is associated with multiple classes. Examples include annotation of images with multiple labels, assigning multiple tags for a web page, etc. Since several labels can be assigned to a single instance, one of the key challenges in this problem is to learn the correlations between the classes. Our f...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملSupervised acoustic topic model for unstructured audio information retrieval
We introduce a modified version of the acoustic topic model, which assumes an audio signal consists of latent acoustic topics and each topic can be interpreted as a distribution over acoustic words, for unstructured audio information retrieval applications. The proposed supervised acoustic topic model is based on supervised latent Dirichlet allocation (sLDA) while the conventional acoustic topi...
متن کاملThe Polylingual Labeled Topic Model
In this paper, we present the Polylingual Labeled Topic Model, a model which combines the characteristics of the existing Polylingual Topic Model and Labeled LDA. The model accounts for multiple languages with separate topic distributions for each language while restricting the permitted topics of a document to a set of predefined labels. We explore the properties of the model in a two-language...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014